Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Zhongguo Zhong Yao Za Zhi ; 49(2): 361-369, 2024 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-38403312

RESUMO

The 4-coumarate: CoA ligase(4CL) is a key enzyme in the upstream pathway of phenylpropanoids such as flavonoids, soluble phenolic esters, lignans, and lignins in plants. In this study, 13 4CL family members of Arabidopsis thaliana were used as reference sequences to identify the 4CL gene family candidate members of Isatis indigotica from the reported I. indigotica genome. Further bioinformatics analysis and analysis of the expression pattern of 4CL genes and the accumulation pattern of flavonoids were carried out. Thirteen 4CL genes were obtained, named Ii4CL1-Ii4CL13, which were distributed on chromosomes 1, 2, 3, 4, and 6. The analysis of the gene structure and conserved structural domains revealed the intron number of I. indigotica 4CL genes was between 1 and 12 and the protein structural domains were highly conserved. Cis-acting element analysis showed that there were multiple response elements in the promoter sequence of I. indigotica 4CL gene family, and jasmonic acid had the largest number of reaction elements. The collinearity analysis showed that there was a close relationship between the 4CL gene family members of I. indigotica and A. thaliana. As revealed by qPCR results, the expression analysis of the 4CL gene family showed that 10 4CL genes had higher expression levels in the aboveground part of I. indigotica. The content assay of flavonoids in different parts of I. indigotica showed that flavonoids were mainly accumulated in the aboveground part of plants. This study provides a basis for further investigating the roles of the 4CL gene family involved in the biosynthesis of flavonoids in I. indigotica.


Assuntos
Isatis , Ligases , Ligases/genética , Isatis/genética , Regiões Promotoras Genéticas , Plantas/metabolismo , Flavonoides , Coenzima A Ligases/genética , Coenzima A Ligases/química , Coenzima A Ligases/metabolismo
2.
Zhongguo Zhong Yao Za Zhi ; 48(6): 1510-1517, 2023 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-37005838

RESUMO

Chalcone isomerase is a key rate-limiting enzyme in the biosynthesis of flavonoids in higher plants, which determines the production of flavonoids in plants. In this study, RNA was extracted from different parts of Isatis indigotica and reverse-transcribed into cDNA. Specific primers with enzyme restriction sites were designed, and a chalcone isomerase gene was cloned from I. indigotica, named IiCHI. IiCHI was 756 bp in length, containing a complete open reading frame and encoding 251 amino acids. Homology analysis showed that IiCHI was closely related to CHI protein of Arabidopsis thaliana and had typical active sites of chalcone isomerase. Phylogenetic tree analysis showed that IiCHI was classified into type Ⅰ CHI clade. Recombinant prokaryotic expression vector pET28a-IiCHI was constructed and purified to obtain IiCHI recombinant protein. In vitro enzymatic analysis showed that the IiCHI protein could convert naringenin chalcone into naringenin, but could not catalyze the production of liquiritigenin by isoliquiritigenin. The results of real-time quantitative polymerase chain reaction(qPCR) showed that the expression level of IiCHI in the aboveground parts was higher than that in the underground parts and the expression level was the highest in the flowers of the aboveground parts, followed by leaves and stems, and no expression was observed in the roots and rhizomes of the underground parts. This study has confirmed the function of chalcone isomerase in I. indigotica and provided references for the biosynthesis of flavonoid components.


Assuntos
Arabidopsis , Isatis , Isatis/genética , Proteínas de Plantas/metabolismo , Filogenia , Arabidopsis/genética , Flavonoides , Clonagem Molecular
3.
J Nanosci Nanotechnol ; 18(1): 668-675, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29768893

RESUMO

In this work, novel porous cellulose nanofibrils (CNF)/poly(vinyl alcohol) (PVA) hydrogels were prepared using the hybrid solvent of dimethyl sulfoxide (DMSO)/water, followed by freezing/thawing process. Structure, swelling, mechanical and thermal properties of CNF/PVA were explored. The results revealed that porous hydrogels were formed by using the hybrid solvent of DMSO/water, and the pore sizes of hydrogels were controlled by the concentration of CNF. The porous structure of the composite hydrogels can strongly enhance the swelling properties as expected. Compared with pure PVA hydrogels, a 150% improvement in compressive strength were achieved by the hybrid solvent. And the increment of compressive strength depended on the concentration of the CNF. Moreover, the addition of CNF improved the thermal stability of the PVA hydrogels significantly. The low cost, nontoxic and high-performance nanoreinforced hydrogels may have a promising application in tissue engineering fields.

4.
J Reprod Dev ; 63(5): 481-488, 2017 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-28690291

RESUMO

Geminin plays a critical role in cell cycle regulation by regulating DNA replication and serves as a transcriptional molecular switch that directs cell fate decisions. Spermatogonia lacking Geminin disappear during the initial wave of mitotic proliferation, while geminin is not required for meiotic progression of spermatocytes. It is unclear whether geminin plays a role in pre-meiotic DNA replication in later-stage spermatogonia and their subsequent differentiation. Here, we selectively disrupted Geminin in the male germline using the Stra8-Cre/loxP conditional knockout system. Geminin-deficient mice showed atrophic testes and infertility, concomitant with impaired spermatogenesis and reduced sperm motility. The number of undifferentiated spermatogonia and spermatocytes was significantly reduced; the pachytene stage was impaired most severely. Expression of cell proliferation-associated genes was reduced in Gmnnfl/Δ; Stra8-Cre testes compared to in controls. Increased DNA damage, decreased Cdt1, and increased phosphorylation of Chk1/Chk2 were observed in Geminin-deficient germ cells. These results suggest that geminin plays important roles in pre-meiotic DNA replication and subsequent spermatogenesis.


Assuntos
Geminina/genética , Infertilidade Masculina/genética , Meiose/genética , Espermatogênese/genética , Animais , Replicação do DNA/genética , Deleção de Genes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Espermatócitos/fisiologia
5.
Sci Rep ; 6: 38574, 2016 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-27991495

RESUMO

Kif2a is a member of the Kinesin-13 microtubule depolymerases. Here, we report the expression, subcellular localization and functions of Kif2a during mouse oocyte meiotic maturation. Immunoblotting analysis showed that Kif2a was gradually increased form GV to the M I stages, and then decreased slightly at the M II stage. Confocal microscopy identified that Kif2a localized to the meiotic spindle, especially concentrated at the spindle poles and inner centromeres in metaphase and translocated to the midbody at telophase. Kif2a depletion by siRNA microinjection generated severely defective spindles and misaligned chromosomes, reduced microtubule depolymerization, which led to significant pro-M I/M Iarrest and failure of first polar body (PB1) extrusion. Kif2a-depleted oocytes were also defective in spindle pole localization of γ-tubulin and showed spindle assembly checkpoint (SAC) protein Bub3 at the kinetochores even after 10 hr extended culture. These results demonstrate that Kif2a may act as a microtubule depolymerase, regulating microtubule dynamics, spindle assembly and chromosome congression, and thus cell cycle progression during mouse oocyte meiotic maturation.


Assuntos
Cinesinas/metabolismo , Meiose , Oócitos/citologia , Oócitos/metabolismo , Proteínas Repressoras/metabolismo , Fuso Acromático/metabolismo , Animais , Diferenciação Celular/efeitos dos fármacos , Segregação de Cromossomos/efeitos dos fármacos , Cromossomos de Mamíferos/metabolismo , Feminino , Técnicas de Silenciamento de Genes , Pontos de Checagem da Fase M do Ciclo Celular/efeitos dos fármacos , Meiose/efeitos dos fármacos , Camundongos Endogâmicos ICR , Nocodazol/farmacologia , Oócitos/efeitos dos fármacos , Paclitaxel/farmacologia , Corpos Polares/metabolismo , Fuso Acromático/efeitos dos fármacos , Frações Subcelulares/efeitos dos fármacos , Frações Subcelulares/metabolismo , Tubulina (Proteína)/metabolismo
6.
Sci Rep ; 5: 16978, 2015 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-26582107

RESUMO

Cep55 is a relatively novel member of the centrosomal protein family. Here, we show that Cep55 is expressed in mouse oocytes from the germinal vesicle (GV) to metaphase II (MII) stages. Immuostaining and confocal microscopy as well as time lapse live imaging after injection of mRNA encoding fusion protein of Cep55 and GFP identified that Cep55 was localized to the meiotic spindle, especially to the spindle poles at metaphase, while it was concentrated at the midbody in telophase in meiotic oocytes. Knockdown of Cep55 by specific siRNA injection caused the dissociation of γ-tubulin from the spindle poles, resulting in severely defective spindles and misaligned chromosomes, leading to metaphase I arrest and failure of first polar body (PB1) extrusion. Correspondingly, cyclin B accumulation and spindle assembly checkpoint (SAC) activation were observed in Cep55 knockdown oocytes. Our results suggest that Cep55 may act as an MTOC-associated protein regulating spindle organization, and thus cell cycle progression during mouse oocyte meiotic maturation.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Ciclo Celular , Oócitos/citologia , Oócitos/metabolismo , Fuso Acromático/metabolismo , Anáfase , Animais , Cromossomos de Mamíferos/metabolismo , Ciclina B1/metabolismo , Feminino , Técnicas de Silenciamento de Genes , Pontos de Checagem da Fase M do Ciclo Celular , Camundongos , Corpos Polares/metabolismo , Transporte Proteico , Frações Subcelulares/metabolismo , Tubulina (Proteína)/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...